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Abstract

In this work finite element simulations are conducted based on the micro structure of polymers in order to transfer the
information of the micro level to the macro level. The micro structure of polymers is characterized by chain-like macro-
molecules linked together at certain points. In this way an irregular three-dimensional network is formed. Many authors
use the tool of statistical mechanics to describe the deformation behaviour of the entire network. Most of these concepts
can be reformulated as traditional continuum mechanical formulations. They are, however, restricted to affine deforma-
tion, regular chain arrangements and purely elastic material behaviour. For this reason, in the present contribution, we
propose a new finite element-based simulation method for polymer networks which enables us to include non-affinity
and arbitrary chain configurations. It can be easily extended to include chain breakage and reconnection.

The polymer structure to be investigated, e.g. a rubber boot or a seal, is discretized by means of tetrahedral elements. To
each edge of a tetrahedral element one truss element is attached which models the force–stretch behaviour of a bundle of
polymer chains. Each of these tetrahedral unit cells represents the micro mechanical material behaviour in a certain point
of the network. The proposed method provides the possibility to observe how changes at the microscopic level influence the
macroscopic material behaviour. Such information is especially valuable for the polymer industry.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The microscopic structure of polymers consists of long, randomly oriented molecular chains which are
linked together at certain points. In this way an arbitrary three-dimensional network is formed. In addition
there exist intermolecular interactions between the particular atoms which have an important influence on
the dilatational response of rubber-like material (see e.g. Gaylord, 1979; Ball et al., 1981; Gao and Weiner,
1991; Lodge, 1999).
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Several authors have studied the micro mechanical behaviour by means of molecular-dynamics simulations.
Complex techniques, as e.g. the Monte Carlo method or the bond fluctuation method, have been developed
for this purpose (Wittkop et al., 1994; Hölzl et al., 1997; Lang et al., 2003). These approaches have in common
that in the discretized model each chain or even chain link is represented separately. In this way for instance
the vulcanization process can be modelled very realistically. However, such simulations require an extreme
computational effort. Therefore they are usually carried out at the level of a representative volume element.
It is improbable that the step to model complex structures, such as e.g. seals or bearings, can be made in
the near future.

The numerical modelling can be noticeably simplified if the tools known from statistical mechanics are
incorporated (see e.g. Kuhn, 1936; Wall, 1942; Flory and Rehner, 1943; James and Guth, 1943; Treloar,
1943). The latter models are based on the assumption that the bonds of the network are permanent (static
network theory). Furthermore the following assumptions have been established:

(i) All chains of the network have the same length nl in the totally extended state (n, number of chain links
and l, average length of a chain link).

(ii) The distribution of the end-to-end distances r0 of the chains is calculated by means of Gaussian statistics.
(iii) The deformation of the material is affine.
(iv) There is no change in volume.

Based on these assumptions Treloar (1943) derived the well-known ‘‘Neo-Hookean’’ free energy function
(per reference volume) W ¼ ðl=2Þðk21 þ k22 þ k23 � 3Þ where ki (i = 1,2,3) represent the principal stretches and
l = NkH denotes the rubber shear modulus (N, number of chains per reference volume; k, Boltzmann�s con-
stant; H, absolute temperature). This network model is only suitable for moderate strains and therefore does
not correlate well with experiments for large strains. This problem has been overcome by newer models, e.g.
the ones of Arruda and Boyce (1993), Wu and van der Giessen (1993), Anand (1996) and Bischoff et al. (2002).
The mentioned concepts are based on the Langevin statistics which has been originally suggested by Kuhn and
Grün (1942). However, also the more recent network theories work with the assumptions (i), (iii) and (iv).

Alternatively, to overcome the deficiency of the Neo-Hooke model, rubber-like materials can be described
by purely continuum-based models. Among the most popular ones of this kind are the concepts of Mooney
(1940), Rivlin (1948) and Ogden (1972). The best agreement with experiments is displayed by the Ogden
model. The disadvantage of the latter approaches with respect to the models based on chain statistics lies
in the fact that the material parameters are not physically motivated. As such they can only be found by means
of experiments. This fitting procedure can be very elaborate if the number of parameters is large. Further there
is usually not only one set of material parameters which yields a good correlation with the experimental data
(non-uniqueness).

This is the reason why in the present contribution a micro mechanically based approach is preferred. In
comparison to earlier works we aim to avoid the assumptions (i)–(iv). The transfer of the known micro
mechanical material behaviour to the macroscopic level by means of the finite element method is crucial to
the work.

The proposed approach is based on the idea of representing the polymer network by means of an assembly
of non-linear truss elements. Each truss element models the force–stretch behaviour of a certain group of
chains. The truss elements are configured in such a way that six of them form a cell of tetrahedral shape. These
tetrahedral elements serve to model the hydrostatic pressure built up in the network. Using a random assem-
bling procedure we are in the position to model arbitrary geometries. Another advantage of this concept is the
possibility to treat chain breakage and reconnection, i.e. inelasticity. Alternative finite element-based concepts
have been suggested by André et al. (2001) and Lulei and Miehe (2001). Of further interest is also the work of
Besdo and Ihlemann (2003) who propose the so-called theory of self-organizing linkage patterns to model typ-
ical rubber non-linearities such as hysteresis and stress softening.

The paper is structured as follows. In Section 2 the modelling of the force–stretch behaviour of a single
polymer chain is discussed in detail. To obtain a realistic response of the full network, near-incompressibility
has to be taken into account. This is achieved by the addition of another volumetric contribution in the center
of each unit cell. In Section 3 we derive the corresponding finite element formulation. The transition from the
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micro to the macro transition is discussed in Section 4. Section 5 gives a circumstantial survey of the numerical
simulation. We examine in detail the influence of micro mechanical properties, such as e.g. the chain length
and the chain configuration, on the macroscopic behaviour. The section closes with a study of convergence
with respect to mesh refinement. In Section 6 the proposed concept is validated by means of a comparison
with experimental results. The paper closes with a summary and an outlook to future work.

2. Material modelling

2.1. Statistical mechanics of the micro structure—the single chain

One fundamental material property of rubber-like material is its high elasticity which permits stretching of
several hundred percent. The reason for this behaviour is the particular micro structure of rubber. It is char-
acterized by a huge number of chain-like macromolecules which form a three-dimensional network. The mate-
rial exhibits so-called statistical behaviour, i.e. the network configuration actually taken on by the material is
the most probable one under the given circumstances.

The aim of this section is to describe the material behaviour of a single chain. This problem was e.g. tackled
by Kuhn and Grün (1942). By means of the so-called Langevin function LðbÞ ¼ coth b� 1=b it is possible to
derive an expression for the entropy of the single chain. Assuming further that the internal energy of the chain
can be neglected the Helmholtz free energy is given by
W chain ¼ knH
kchainffiffiffi

n
p bcþ ln

b
sinh b

� �
ð1Þ
In Eq. (1) the stretch of the single chain is described by kchain = r/r0 where r describes the end-to-end distance
of the loaded chain and the initial chain length is represented by
r0 ¼ l
ffiffiffi
n

p
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The variable u describes the rotation angle. The bond angle # = 180� � d can be calculated by the use of the
valence angle d (see also Fig. 10). For a discussion of the influence of r0 on the macroscopic behaviour, see
Section 5.3. The factor b can be expressed in form of the series expansion (see e.g. Kuhn and Grün, 1942)
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It is recognized in (3) that b depends on n, the number of approximation terms in the series expansion, here
called TA, and on c. Fig. 1 shows the influence of n and TA on the relation between the chain force
F chain ¼
oW chain

or
¼ oW chain

okchain

1

r0
þ oW chain

ob
ob

okchain

1

r0
ð4Þ
and the stretch of the single chain kchain. An increase of n leads to a decrease of the chain stiffness, especially for
higher stretches (see Fig. 1(a)). A similar tendency is observed if TA is decreased (see Fig. 1(b)). At the chain level
we do not obtain a converged solution with increasing TA. This is certainly a surprising result which has not yet
been documented in the literature (to our knowledge). However, it will be shown in Section 5.3 that convergence
is obtained at the macro level (see Fig. 8(a)). Ten terms in the series expansion (TA = 10) are sufficient.
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Fig. 1. Tensile behaviour of a single chain (c = 1): (a) variation of n (TA = 10), (b) variation of TA (n = 4).
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Fig. 2 depicts the influence on the force–stretch behaviour of the third parameter c for a single chain. The
valence angle is usually equal to 109.5� (# = 70.5�). The rotation angle (described by u) varies between �120�
and 120�. Accordingly c lies in the interval 0.8165 < c <1, however typically around 1 (u = 109.5�). In the
present work the characteristic angles have been assumed to be constant for simplicity. Future investigations
should be directed to include statistical distributions.

An increase of c leads to stiffer force–stretch behaviour. It is easy to find an explanation for this observation
if one compares the chain with one of the truss configurations shown in Fig. 3. The totally extended state
(indicated by the index ‘‘ex’’) is reached at kex ¼ rex=r0 ¼ nl=ðnl cos#Þ ¼ 1= cos#. The value of kex for confi-
guration 2 is smaller than for configuration 1 (#2 < #1). Even if all trusses have the same stiffness and the
Fig. 2. Tensile behaviour of a single chain: variation of c.



Fig. 3. Tensile behaviour of two linear trusses (solid lines) and two chain configurations (dashed lines): variation of c (inset: two truss
configurations).
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force–displacement relation is linear, different curves are obtained. A similar effect is seen in Fig. 2 where, how-
ever, the slope of the curves is always positive and the increase of the force therefore more smoothly.

We also emphasize the well-known fact that the force is not zero for kchain = 1. It vanishes for kchain = 0, i.e.
r = 0 (see Figs. 1 and 2). This result arises from applying statistical mechanics where the most probable con-
figuration of the unloaded chain is the one where the end-to-end distance becomes zero.

2.2. Additional volumetric contribution

In Section 2.1 we have recognized that the statistical properties of a single chain only depend on geometrical
parameters and can therefore be modelled in a relatively simple way. However, intermolecular interactions, in
particular the effect of the well-known van der Waals forces, cannot be completely neglected because they are
mainly responsible for the fact that rubber is almost incompressible. The action of the van der Waals forces
cannot be simulated by using truss elements because the latter only serve to represent the force–stretch relation
given in (4). As such they cannot undergo compressive loads. Additionally it has been observed that an arbi-
trary three-dimensional network of these truss elements (under tensile loading) gives us a macroscopic re-
sponse where the volume enclosed by the structure is not preserved when the structure deforms. This
contradicts the important experimental observation that rubber exhibits approximately incompressible behav-
iour. Both these difficulties are due to the fact that there is no force between the chains to keep them apart
from each other as observed in reality. In order to obtain (near-) incompressible material behaviour, it is nec-
essary to have something ‘‘between the chains’’. To give the structure additional volumetric stiffness, we fill the
space between the chains with artificial material. The latter is modelled by means of the Helmholtz free energy
function per reference volume
W tetr ¼
K
4
ðJ 2 � 1� 2 ln JÞ ð5Þ
where J = detF denotes the determinant of the macroscopic deformation gradient F and K is the bulk
modulus.

3. Finite element formulation

According to the introductory remarks at the beginning we establish a finite element unit cell that consists
of one tetrahedral element and six truss elements lying on each edge of the tetrahedron, see also Fig. 4. The
Helmholtz free energy of one unit cell then includes one contribution coming from the tetrahedral element
(Wtetr) and another one coming from the truss elements (Wtruss j, j = 1, . . ., 6):
W ¼ W tetr þ
X6

j¼1

W truss j ð6Þ



Fig. 4. Finite element unit cell with one tetrahedral element and six truss elements. Enlarged: fchain chains per truss element.
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In Fig. 4 a typical unit cell is shown. The straight lines represent the outline of the tetrahedral element, the
truss elements are indicated by the curved lines. In reality, the number of chains per volume is huge. This fact
makes it impossible to replace each chain by one truss element. Fortunately, this is not necessary because the
macroscopic stress–strain behaviour is already described with sufficient accuracy if one truss element is used as
representative of several polymer chains, i.e. a bundle of chains (see the enlargement of Fig. 4). The Helmholtz
free energy function of the truss element j (j = 1, . . ., 6) has then the form
W truss j ¼
1

A0jL0j
fchainW chain j ð7Þ
with
W chain j ¼ knjH
kchain jffiffiffiffi

nj
p bjcj þ ln

bj

sinh bj

" #
ð8Þ
In Eq. (7) A0j is the cross-section and L0j the length of the truss element in its undeformed state. As will be
shown in the following derivation (see Eqs. (10)–(15)) these two quantities can be removed from the formu-
lation. If this were not the case we would run into the difficulty to choose physically reasonable values for A0j

and L0j. Evidently it is not possible to determine the cross-section of a chain. The length L0j could be in some
way related to the initial end-to-end distance r0j. However, since n, l, # and u are known, such a connection
would pose a restriction on the size of the elements and therefore increase the computational effort enor-
mously. In summary, the fact that the geometry of the FE mesh (expressed in terms of L0j and A0j) is not di-
rectly coupled to the geometry of the polymer network can be considered to be a very advantageous feature of
the model.

The parameter
fchain ¼
N

N truss

ð9Þ
defines the ratio between N, the number of polymer chains per reference volume and Ntruss, the number of
truss elements in the same reference volume. fchain ranges between 1 (i.e. Ntruss = N, one truss element
per chain) and N (i.e. Ntruss = 1, one truss element for all chains). It is clear that the aim must be to make
fchain as large as possible, because then the minimum number of elements and therefore maximum computa-
tional efficiency is obtained. On the other hand, convergence has to be achieved (see Section 5.4). This is
the case when a decrease of fchain does not alter the macroscopic result. At this point it is assumed that the
chains and the trusses are approximately uniformly distributed in the structure. This justifies the
assumption that N, Ntruss and therefore also fchain are constant parameters. In the case of inhomogeneous
distributions of either the chains or the trusses the parameters N or fchain, respectively, should be varied
accordingly.
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For the use of the finite element formulation we establish the weak form of the balance of linear momentum
(volume forces and inertia terms neglected)
g ¼
Xnz
z¼1

gint z þ gext ¼ 0 ð10Þ
where nz denotes the number of finite element cells. Here gint z represents the virtual work of the internal forces
in one unit cell, the summand gext is the contribution of the external loading. The part gint z is given by
gint z ¼
Z
V 0z

oW tetr

oJ
dJ dV 0z|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gtetr
int z

þ
X6

j¼1

Z L0j

X j¼0

oW truss j

oLj
dLj dX jA0j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

gtruss
int z

ð11Þ
where the coordinate Xj points in the longitudinal direction of the truss j, and Lj is its current length. The
quantity V0z denotes the volume of the unit cell (i.e. the tetrahedral element) in its undeformed state. The
expression oWtetr/oJ is equal to the hydrostatic pressure multiplied by J whereas oWtruss j/oLj represents
the force in the truss j divided by the cross-section A0j.

3.1. Truss contribution

Using (11), the second part of the latter equation is alternatively represented as
X6

j¼1

Z L0j

X j¼0

oW truss j

oLj
dLjdX jA0j ¼ fchain

X6

j¼1

Z L0j=2

Xj¼�L0j=2

oW chain j

oLj
dLjd

X j

L0j

� �
¼ fchain

X6

j¼1

Z 1

nj¼�1

oW chain j

okchain j
dkchain j

1

2
dnj

ð12Þ

In (12) Wchain j is considered as a function of kchain j = Lj/L0j alone, i.e. bj has already been replaced by the
expression (3). Further, we have introduced the non-dimensional coordinate nj = Xj/(L0j/2) = (2Xj)/L0j.

Inserting the stretch–displacement relation kchain j = Bchain jUz one finally obtains for the truss contributa-
tion of gint z the relation
gtrussint z ¼ dUT
z fchain

X6

j¼1

Z 1

nj¼�1

BT
chain j

oW chain j

okchain j

1

2
dnj :¼ dUT

z R
truss
z ð13Þ
The vector Uz contains the corresponding 12 degrees-of-freedom. The matrix Bchain j is given by the relation
Bchain j ¼ ½ð1þ u;X jÞv;X jw;Xj � where
u;X j ¼
u2j � u1j

L0j
; v;Xj ¼

v2j � v1j
L0j

; w;X j ¼
w2j � w1j

L0j
ð14Þ
are the derivatives of the three displacement components u, v and w (interpolated by linear shape functions)
with respect to Xj. The numbers 1 and 2 refer to the nodes 1 and 2 of the truss element, respectively.

3.2. Tetrahedral contribution

Analogously to kchain j ¼ Bchain jUz the quantity J is expressed via J = BtetrUz where the vector Btetr is a func-
tion of the so-called tetrahedral coordinates (see e.g. Zienkiewicz and Taylor (2000, Section 8) for more de-
tails). In the finite element technology it is well-known that tetrahedral elements based on usual linear
interpolation functions tend to volumetric locking in the limit of incompressibility. Different methods have
been developed to avoid this phenomenon. One simple remedy against locking is the method of selective re-
duced integration where the volumetric part of the material response is only evaluated in the so-called centre
of the element (indicated by the index 0). Such an idea can also be realized easily for the method proposed in
this paper. The tetrahedral contribution of gint z then reads:
gtetrint z ¼ dUT
z B

T
tetr0

oW tetr

oJ

����
0

V 0z :¼ dUT
z R

tetr
z ð15Þ
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As an additional advantage, one gains computational efficiency because the element quantities have to be eval-
uated only once (in the centre of the tetrahedral element).

Another possibility to circumvent the locking phenomenon is to work with higher order interpolation func-
tions. The disadvantage of finite element simulations based on such higher order elements is the increase of the
band width in the global equation system which leads to a noticeable increase of the computational effort.
Alternatively so-called mixed methods (see e.g. Wriggers (2001, Section 10) for more details) or special mixed
methods based on the sub-scale method (see Chiumenti et al., 2002) can be employed. In the context of the
present examples it has been found that working with selective reduced integration provides satisfactory
convergence behaviour. According to our present state of knowledge it is therefore not necessary to put more
effort into the issue of finite element technology. This aspect should be, however, further investigated in the
context of industrial applications.

After the discretization of the external loading term gext ¼ dUTFext, the assembling procedure and the imple-
mentation of the displacement boundary conditions one finally arrives at the non-linear equation system
GðUÞ :¼ RtrussðUÞ þ RtetrðUÞ � Fext ¼ 0 ð16Þ

where U represents the global nodal displacement vector and Rtruss (Rtetr) the global residual force vector of
the truss (tetrahedral) contribution.

4. Micro–macro transition

It is important to state clearly at which point the micro–macro transition takes place. In Section 2 the chain
stretch kchain has been defined as the ratio between the current end-to-end distance r and the end-to-end dis-
tance r0 in the undeformed state of the network. At the finite element level we compute kchain j by means of the
quotient Lj/L0j. We therefore obtain the important connection
kchain j ¼
Lj

L0j
¼ rj

r0j
ð17Þ
between the micro scale (quantities rj, r0j) and the macro scale (quantities Lj, L0j). We can also draw the crucial
conclusions that

(i) the current length Lj of the truss element is in general not equal to the end-to-end distance rj of the chain,
(ii) the truss lengths L0j can be chosen independently of the chain geometry.

5. Numerical simulations

The aim of this section is to study how the deformation behaviour of the network deviates from the one of
the single chain. For this purpose we generate a finite element mesh with 37116 truss elements per mm3 and
choose the boundary conditions suitably to model homogenous deformation states. Fig. 5(a) shows the unde-
formed and (b) the deformed mesh for uniaxial tension. The parameters for these calculations read n = 30,
c = 1, N = 1.910 · 1021 mm�3, fchain = 5.146 · 1016 (Ntruss = 37116 mm�3), K = 105 N/mm2, TA = 10,
k = 1.380662 · 10�20 N mm/K and H = 273 K. It should be emphasized that the values of n, c (#,u) and N

are known immediately when the components of the polymer mixture are known. The Boltzmann�s constant
k is certainly fixed, too. We further consider only isothermal processes (H = const.). To enforce (near-)incom-
pressibility, the bulk modulus K which plays the role of a penalty parameter has to be chosen as large as pos-
sible. The only user-defined parameter is the ratio fchain = N/Ntruss or, alternatively, the number of truss
elements per reference volume Ntruss.

5.1. General network behaviour

To understand the network behaviour it is instructive to look at the chain stretch distribution for various
deformation cases, e.g. pure shear (k1 = k, k2 = 1 and k3 = 1/k) and uniaxial compression.
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Fig. 5. Typical FE mesh (1 mm · 1 mm · 1 mm), here with 37116 truss elements: (a) undeformed mesh, (b) deformed mesh in uniaxial
tension (scaled).
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In the pure shear experiment the average truss length is calculated to read Laver = 0.137 mm. The stretch
values of the chain bundles are plotted in Fig. 6(a) (knetwork = 5: kchain aver = 2.56, knetwork = 9:
kchain aver = 4.42). The result is obvious. An increase of the prescribed network stretch must lead to an increase
of the average chain stretch kchain aver in this case. Due to the unstructured discretization the chain stretch
distribution becomes at the same time more diverse.

Secondly we perform the simulation of uniaxial compression. Due to the fact that the material is almost
incompressible the chains perpendicular to the loading direction are stretched whereas the chains in loading
direction are compressed. The load is taken by the tetrahedral elements. In the perpendicular direction the
macroscopic stress contribution coming from the tetrahedral elements has the same absolute value as the mac-
roscopic stress resulting from the tension of the chains. Since the signs of the two stress contributions are, as
expected, different, the total macroscopic stress in this direction vanishes. The average stretch in the single
chains is significantly smaller than in the other examples (knetwork = 0.15: kchain aver = 2.03), see Fig. 6(b).

The behaviour of the chains for the load case uniaxial compression is additionally visualized by means of
the angle a which is defined as the angle between the truss element and the plane perpendicular to the loading
direction. Fig. 7(a) shows the angle distribution in the undeformed state (crosses) and the deformed state
(bars) of a uniaxial compression simulation. In the undeformed case a relatively uniform distribution is seen.
This changes when the load is applied. Then the number of small angles, especially a = 0, becomes much lar-
ger, i.e. the number of chains which are lying perpendicular to the loading direction increases. These chains are
loaded with higher forces, see Fig. 7(b).

5.2. Influence of TA on the macroscopic material behaviour

The dependence of the network response on number of terms in the inverse Langevin function is studied in
Figs. 8(a) and (b), 9(a) and (b) where the deformation states uniaxial tension, biaxial tension, pure shear and
uniaxial compression, respectively, have been considered. If only one term in the series expansion is used
(TA = 1) the curve exhibits Neo-Hooke-like material behaviour. If TA is clearly larger than one, the classical
S-shaped function is obtained (Ogden-like material behaviour). This is especially visible in the case of uniaxial
tension.
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Fig. 6. Chain stretch distributions: (a) pure shear, (b) uniaxial compression.
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The curve for uniaxial compression (Fig. 9(b)) is significantly different from the other three. This can be
explained by the fact that the average stretch in the single chains is much smaller than in the other examples
(knetwork = 0.15: kchain aver = 2.03), see Fig. 9(b). Therefore the macroscopic response is in this case practically
independent of TA.

In summary, TA should be large enough to yield a converged solution. Fig. 8(a) shows that 10 terms are
usually enough. The choice of TA = 1 is special in the regard that then a Neo-Hooke material is obtained.
However, the latter model is not realistic for large stretches.

Further it is important to note that, independently of TA, the macroscopic stress vanishes for knetwork = 1
as expected from the physical point of view. The fact that the chain force does not vanish for kchain = 1 does
not have a non-physical effect on the network response.

5.3. Interaction between the micro and the macro structure

One of the advantages of the present model is the possibility to transfer the information from the micro
level to the macro level and contrariwise. The possibility to obtain the information of both levels during a cal-
culation leads to a better understanding of the mechanical behaviour of rubber-like materials.

5.3.1. Influence of the chain length

The first interesting issue is the dependence of the macroscopic material response on the chain length. In
Fig. 10 an undeformed chain (end-to-end distance r0) consisting of six chain segments is shown (n = 6).

The calculation of the real chain length is certainly very complex and difficult because every polymer chain
has random shape, to be expressed in terms of the number of links n and varying segment lengths and rotation
angles. Using the assumptions that (i) all segments have the same length and (ii) the valence angle d and the
rotation angle u are constant within one chain, the end-to-end distance of the chain in the undeformed state
can be computed with the relation (2): r0 ¼ l

ffiffiffi
n

p
c, see Flory (1969).



a

b

Fig. 7. Uniaxial compression simulations: (a) angle distribution for the loaded and the unloaded case, (b) force distribution depending on
the angle a.
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Among the three parameters l, n and c which control the initial chain length r0 only the quantities n and c
enter the Helmholtz free energy function Wchain. Thus the finite element result is independent of l. In other
words, using the same finite element discretization and boundary conditions for a group of polymer networks
defined by the prescribed parameters n, c, N and an arbitrary segment length l leads to the same results, i.e. the
same chain stretches kchain j in each truss element. Certainly the resulting current chain lengths computed by
rj ¼ kchain jðl

ffiffiffi
n

p
cÞj depend again on l.

In contrast, the finite element solution depends noticeably on the choice of c and n. For u = 90� and
decreasing # the value of c increases. This means practically that r0 increases if all other chain properties
are left unchanged. Considering the same argument as used in Section 2.2 (see also Figs. 2 and 3) it can be
expected that the stiffness of the polymer network increases, see Fig. 11. The simulation has been based on
the parameters n = 10, N = 2.071 · 1022 mm�3, fchain = 2.329 · 1018 (Ntruss = 8892 mm�3), K = 106 N/mm2

and TA = 10.
Another method to influence the initial chain length is to modify the parameter n. In Fig. 1(a) it has been

observed that the chain stiffness increases with decreasing n. Note that this effect cannot be explained by means
of the truss analogy discussed in Section 2.1. It is rather a non-linear effect caused by the statistical properties
of the polymer chains. Again the polymer network exhibits a behaviour similar to the single chain, see Fig. 12.
The stiffness of the network decreases with increasing n.

It should also be emphasized that in the limit n ! 1 a Neo-Hooke-like curve is obtained whereas a mod-
erate n leads to a S-shaped stress–stretch function. Similar behaviour has been observed in the context of a
varying TA, see Section 5.2.

5.3.2. Non-affinity

Most network models are based on the assumption of affinity. It means that the length of a single chain is
changing to the same extent as the dimension of the whole network. In Fig. 13 a pure shear deformation state



a

b

Fig. 8. Influence of TA: (a) uniaxial tension, (b) biaxial tension.

M. Böl, S. Reese / International Journal of Solids and Structures 43 (2006) 2–26 13
(k1 = k, k2 = 1/k, k3 = 1) has been applied. If the four-chain network obeys affinity all four chains undergo the

stretch kchain ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ k4Þ

q
=ðk

ffiffiffi
2

p
Þ, i.e. all four chains are equally long and the centre point stays in the centre of

the specimen, independently of the size of k.
In the present model it is easily possible to deviate from affinity. If two chain bundles (truss elements) un-

dergo the same stretch kchain their end-to-end distances can be different:
kchain 1 ¼
r1

l1
ffiffiffiffiffi
n1

p
c1

¼ r2
l2

ffiffiffiffiffi
n2

p
c2

¼ kchain 2 ) r1 ¼
l1

ffiffiffiffiffi
n1

p
c1

l2
ffiffiffiffiffi
n2

p
c2
r2 ð18Þ
Conversely, if the macroscopic deformation is prescribed in such a way that for geometrical reasons two chain
groups must have the same end-to-end distance r1 = r2, this does not necessarily require kchain 1 = kchain 2.
Thus, as stated above, we are able to model non-affine deformation if different values of n or c are incorpo-
rated into the FE model.

To illustrate non-affine deformation behaviour we look at the smallest possible network consisting of eight
truss elements (see Fig. 14) and perform uniaxial tension simulations by using the following parameters: c = 1,
N = 7.975 · 1016 mm�3, fchain = 9.968 · 1015 (Ntruss = 8 mm�3), K = 106 N/mm2 and TA = 7.

In the first simulation we select for every chain bundle the same number of links (n = 8). As expected the
deformation of the network is affine. In the second simulation we work with the distributions 1 and 2, see the
inset of Fig. 14(a). The dotted lines represent chains where n is chosen to be equal to 4 whereas the chains
plotted as solid lines have 12 chain links (naver = 8). The average number of segment links amounts in both
cases to 8.

Only for distribution 1 the resulting deformation turns out to be non-affine. For symmetry reasons distri-
bution 2 leads to an affine deformation. The stress–stretch curve agrees with the one for n = const. = 8. The
network response is much stiffer than in the simulation based on distribution 1 although the same average
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Fig. 9. Influence of TA: (a) pure shear, (b) uniaxial compression.

Fig. 10. Idealized chain with six segments.

Fig. 11. Uniaxial tension simulations: variation of c.
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value for n has been used. This can be explained by a simple linear consideration (see Fig. 15). Distribution 1
can be described by means of two pairs of parallel springs which are in series (see Fig. 15(a)). For the first pair



Fig. 12. Uniaxial tension simulations: variation of n.

Fig. 13. Affine (solid lines) and non-affine (dashed lines) deformation.

M. Böl, S. Reese / International Journal of Solids and Structures 43 (2006) 2–26 15
we obtain the stiffness c% = 2c1, the second pair yields c% = 2c2. The spring pairs in series yield the total stiff-
ness ctot1 = 2c1c2/(c1 + c2). For distribution 2 we have two springs in parallel: c% = c1 + c2. The two springs
with the stiffness c% can be considered to be in series. We then obtain a total stiffness of ctot2 = (c1 + c2)/2.
Inserting c1 = 4 and c2 = 12 leads to ctot1 = 6 and ctot2 = 8, i.e. the second configuration yields the stiffer re-
sponse. A similar observation is made in the non-linear case where the differences between the curves for the
two distributions are relatively large.

In the two last simulations the value of n has been varied over a certain range, in the first case from nmin = 3
to nmax = 21 (distribution 3), in the second case from nmin = 3 to nmax = 11 (distribution 4). The average value
of n (naver) is in both cases equal to 8. As expected, the former case leads to a more distinct deviation from
affinity, the material response is stiffer than in the simulation with the smaller range of n (3 6 n 6 11).

It is further interesting to investigate how different distributions of n influence the behaviour of more com-
plex polymer networks. In comparison to the previous set of parameters we change only the discretization. We
have now fchain = 8.968 · 1012 (Ntruss = 8892 mm�3). The results are shown in Fig. 14(b). Four different kinds
of distributions are tested: (1) n = const. = 8, (2) two chain groups, naver = 8, (3) diverse distribution with
5 6 n 6 20 (naver = 8), (4) diverse distribution with 5 6 n 6 200 (naver = 8). The results for the distributions
(1), (2) and (3) are almost equal and approximately affine. The curve (4) deviates from the other three, it shows
a slightly stiffer response. In comparison to the observations made at the coarse network it can be said that the
more complex network reacts much more insensitively to inhomogeneities in the chain distribution. Obviously
the influences of high and low values of n balance each other in complex chain configurations. For this reason
the range of n has to be very large in order to achieve a significant influence on the stress–stretch response.



a
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Fig. 14. Influence of n for uniaxial tension simulations: (a) network with eight trusses, (b) network with 8892 trusses.

a b
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Fig. 15. Different stiffnesses: (a) distributions 1, (b) distribution 2.
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5.3.3. Influence of an inhomogeneous chain bundle arrangement

Non-affine behaviour can also be generated artificially by working with an inhomogeneous chain bundle
arrangement. Practically this means that the truss elements are not uniformly distributed in the structure
but concentrated on a certain domain. In order to investigate this influence four uniaxial tension tests were
simulated with different finite element discretizations, see the insets of Fig. 16(a)–(d). The degree of inhomo-
geneity increases from (a) to (d). The following parameters were used: n = 9.5, c = 1, N = 3.793 · 1022 mm�3,
fchain = 3.230 · 1017 (Ntruss = 117420 mm�3), K = 106 N/mm2, TA = 5. The results of the simulations are
shown in Fig. 17. Interestingly the stiffness of the material on the macro level decreases with increasing degree
of inhomogeneity.

The explanation of this phenomenon is similar to the one given in Section 5.3.2. Let us consider a unit cube
(side length equal to 1 mm) which is divided into two equal parts arranged above each other. We put 200
chains and 100 truss elements into this cube (N = 200 mm�3, Ntruss = 100 mm�3) and introduce a parameter
a (0 < a < 1) to describe how the trusses are distributed among the two sub-structures:
N truss 1 ¼ aN truss; N truss 2 ¼ ð1� aÞN truss ð19Þ

It is assumed that the chains are distributed approximately homogeneously. The value of N is therefore con-
stant. The ratios fchain 1 and fchain 2 are then computed with
fchain 1 ¼
N

N truss 1

¼ 1

a
N

N truss

¼ 1

a
fchain

fchain 2 ¼
N

N truss 2

¼ 1

1� a
N

N truss

¼ 1

1� a
fchain

ð20Þ
Fig. 16. Truss length distributions of four different meshes with different inhomogeneities. Inset: undeformed meshes.



Fig. 17. Uniaxial tension simulations for four meshes with different inhomogeneity.
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In order to account correctly for the inhomogeneous chain bundle arrangement it would be necessary to work
domainwise with different values of fchain. Instead, fchain has been held constant in the simulation. Referring to
our simple example this means that in the first sub-structure we obtain N 1 ¼ fchainN truss 1 ¼
ðN=N trussÞaN truss ¼ aN . For the second structure we compute the value N2 = fchainNtruss 2 = (1 � a)N. The
chain densities N1 and N2 can be seen to be proportional to the stiffnesses of the sub-structures. If these
are interpreted as springs, they act in series, i.e. the resulting stiffness must be proportional to a(1 � a)N.
The function a(1 � a) has a maximum at a = 0.5. For this reason the homogeneous chain bundle arrangement
(a = 0.5) yields the highest stiffness. The closer a approaches 0 or 1, respectively, the softer is the material
behaviour at the macro level.

It can be concluded that in meshes with strongly varying element sizes the parameter fchain should be
adapted according to the mesh density. It is then not suitable to treat it as a constant. One possibility is to
split the mesh into various regions which are characterized by a certain mesh density (Ntruss). Knowing the
value of N the parameter fchain can be computed for each region separately. Note again that fchain represents
the number of chains in one chain bundle (truss element). In this way using a varying fchain in an approxi-
mately homogeneous mesh serves to model a varying chain density inside a structure.
5.4. Studies of convergence

It has been mentioned before that the ratio fchain is certainly a crucial indicator for the computational effort.
An increase of fchain means a decrease of the number of elements. Although the proposed FE approach has the
important advantage that (besides fchain) only physically based parameters are used, it would not be very useful
if the element density exceeded by far the one of conventional finite element calculations (based on continuum
mechanical material laws). The purpose of the present section is therefore to study the macroscopic stress–
stretch behaviour in dependence of fchain. We stress the fact that such an investigation is only useful if the
stress or strain state, respectively, is not homogeneous. Otherwise every unit cell exhibits (approximately)
the same deformation state. Obviously then the macroscopic result is (almost) independent of the number
of elements and consequently also independent of fchain (see Figs. 18 and 19).
5.4.1. Block under compression

The first inhomogeneous example is a block under compression, see the inset in Fig. 20. The input param-
eters for this simulation read: n = 10, c = 1, N = 2.266 · 1019 mm�3, K = 106 N/mm2 and TA = 1. Fig. 21
shows the deformed mesh including the truss forces (Ntruss = 22050 mm�3). In Fig. 20 the load–compression
curves obtained with different meshes (2754 mm�3

6 Ntruss 6 87060 mm�3, fchain changed accordingly) are
plotted. The compression level is computed with c = w/H, where w is the maximum displacement measured
at point A, see the inset in Fig. 20, and H denotes the height of the block. The variable m = p/p0 represents
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Fig. 18. Study of convergence using uniaxial tension simulations: Neo-Hooke-like material behaviour.
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Fig. 19. Study of convergence using uniaxial tension simulations: Ogden-like material behaviour.

Fig. 20. Study of convergence: calculations for different meshes. Inset: system description.
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the load factor where the reference value was chosen to be p0 = 450 N/mm2. The calculations show good con-
vergence behaviour with increasing number of elements (see Fig. 20).

5.4.2. Inhomogeneous simple shear

In the second example the finite element simulation of simple shear has been carried out. Again, different
meshes were used, varying from Ntruss = 600 mm�3 to Ntruss = 37116 mm�3. The computation is based on the
input parameters n = 10, c = 1, N = 2.011 · 1019 mm�3, K = 106 N/mm2 and TA = 1. Fig. 22 shows the chain



Fig. 21. Study of convergence: deformed FE-mesh with truss forces.

Fig. 22. Study of convergence: deformed FE-mesh with truss forces.
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forces in the deformed mesh (Ntruss = 23520 mm�3). The convergence with increasing number of elements, see
Fig. 23, is even better than in the first example. This can be explained by the fact that the shear deformation is
by definition approximately volume-conserving. Therefore the locking effect which in the present examples is
caused by the constraint of (near-)incompressibility (‘‘volumetric’’ locking) does not have such a serious influ-
ence as in the first example. In summary, it may be stated that we are able to simulate inhomogeneous defor-
mation states with a computational effort comparable to conventional computations. So, the present approach
should also be suitable for industrial applications. Note again that its main advantage is that the fit of any



Fig. 23. Study of convergence: calculations of different meshes. Inset: system description.
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material parameters is not necessary if the polymer chemist is able to provide the ‘‘micro mechanical’’ param-
eters n, N, # and u.

5.4.3. Rubber boot

In Fig. 24 the half of a rubber boot is shown. The boot is bounded by two rigid steel plates. The lower plate
is hold fixed. The vertical displacement u and the rotation u of the upper steel plate are controlled.

Fig. 25 shows the deformed system of the rubber boot simulated by means of the present approach.
Figs. 26 and 27 show studies of convergence obtained with the present and an alternative continuummechan-

ical model, respectively. The material parameters for the models read (I) present approach: n = 40, c = 1,
N = 1.804 · 1017 mm�3, K = 106 N/mm2, (II) continuum model: l = 0.68 N/mm2 and K = 106 N/mm2. In both
cases, Neo-Hooke-like material behaviour (TA) is assumed.

The convergence behaviour is very similar. In both computations 6250 tetrahedral elements or unit cells,
respectively, are sufficient to obtain a converged solution. The shorthand notation ‘‘u–p’’ refers to a two-field
mixed element formulation. It should be also emphasized that these meshes include the same number of
degrees-of-freedom because the nodes of the truss elements are connected to the ones of the tetrahedral
elements and therefore do not introduce additional degrees-of-freedom into the system. It can be therefore
concluded that the new approach does not require finer meshes, even if complex, practically relevant structures
are considered.
Fig. 24. Rubber boot: description of the system.



Fig. 25. Rubber boot under compression and bending load.

Compression level c=w/H

Fig. 26. Study of convergence: present model.

Compression level c=w/H

Fig. 27. Study of convergence: continuum mechanical model.
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6. Validations

6.1. Comparison of the proposed approach with continuum-based models and with Treloar’s data

In this section we compare the results of the proposed approach and well-known continuum-based material
laws on the basis of experimental measurements. The present concept should not be considered as a new model

because the micro mechanical basis is not different from the one e.g. taken by Arruda and Boyce (1993). How-
ever, it offers the possibility to include non-affinity, arbitrary chain arrangements and finally inelastic material
behaviour. Prerequisite for these extensions is the validation of the concept by means of experimental results.

For the first comparison the data of Treloar for vulcanized rubber (Treloar, 1944) are used. In that work
three deformation states were investigated: uniaxial tension, pure shear and biaxial tension. Our aim is to find
one material parameter set which fits all three experiments with satisfactory agreement. We compare the pro-
posed approach with the following continuum mechanical material laws, see Table 1. Note that in all calcu-
lations the penalty method is used to enforce (near-) incompressibility. Due to the fact that we do not present
the continuum models in the volumetric–deviatoric decoupled form, the penalty parameter is here not the bulk
modulus K but the Lamé constant K. A reasonable choice for it is 1000 N/mm2. In addition, the models in-
clude different numbers of material parameters. In the fitting procedure all three deformation states are taken
into account simultaneously. For the optimized material parameters see Table 1. The parameters of the pres-
ent approach (abbreviated from now on as BR) have been identified to read n = 5.1, c = 1,
N = 7.975 · 1016 mm�3, K = 106 N/mm2 and TA = 7. For the simulations we use 8892 truss elements per
mm3, i.e. the value fchain = 8.968 · 1012 (Ntruss = 8892 mm�3) is obtained.

At first we compare the uniaxial tension simulations (see Fig. 28). Here the Neo-Hooke and the Mooney–
Rivlin models are not satisfactory in the domain of large stretches, i.e. they are not able to mirror the classical
S-shape behaviour. The AB model (although it has also only two parameters) reproduces the material re-
sponse very well. The results of BR are, as expected, very similar to the ones of AB. The Yeoh model shows
an explicit S-shape but yields a slightly too stiff behaviour in the large stretch domain. The best agreement with
the experiment is here obtained by means of the Ogden model.

The results of the pure shear test are plotted in Fig. 29. Again the Neo-Hooke and the Mooney–Rivlin
models are not able to simulate the S-shape and consequently do not show a good agreement with the exper-
imental data. AB and BR show similar behaviour and are able to mirror the experimental data in a satisfac-
tory manner. The curve for the Yeoh model lies in the entire stretch range above the experimental values.
Again the Ogden model yields a very good agreement.

The last experiment to be investigated is the biaxial tension test. The results are plotted in Fig. 30. The
Neo-Hooke model is, as in the other test cases, not able to capture the S-shape. The Mooney–Rivlin model
Table 1
Different strain energy functions with optimized parameters

Model Strain energy function Parameters

Neo-Hooke (Treloar, 1943) W ¼ l
2
ðk21 þ k22 þ k23 � 3Þ � l ln J þ K

4
ðJ 2 � 1� 2 ln JÞ l = 0.377 N/mm2

Arruda and Boyce (1993) W ¼ l
P5

i¼1

Ci

n2i�2
ðI i1 � 3iÞ þ K

4
ðJ2 � 1� 2 ln JÞ l = 0.30 N/mm2

C1;2;3;4;5 ¼
1

2
;
1

20
;
11

1050
;
19

7050
;

519

673750
n = 25.9

Mooney (1940) and Rivlin (1948) W ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ þ K
4
ðJ2 � 1� 2 ln JÞ C10 = 0.16 N/mm2

C01 = 0.01 N/mm2

Yeoh (1993) W ¼
P3

i¼1Ci0ðI1 � 3Þi þ K
4
ðJ2 � 1� 2 ln JÞ C10 = 0.1993 N/mm2

C20 = �0.0015 N/mm2

C30 = 0.000037 N/mm2

Ogden (1972) W ¼
P3

i¼1

lðiÞ
aðiÞ

ðkaðiÞ1 þ k
aðiÞ
2 þ k

aðiÞ
3 � 3Þ � lðiÞ ln J

� �
þ K

4
ðJ 2 � 1� 2 ln JÞ l1 = 0.063 N/mm2

l2 = 0.0012 N/mm2

l3 = �0.01 N/mm2

a1,2,3 = 1.3, 5.0, �2.0



Fig. 28. Results of the uniaxial tension simulations.

Fig. 29. Results of the pure shear simulations.
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shows the S-shape behaviour, but the stress values are much too high. AB and BR yield again similar results.
Both models show too soft a behaviour in the small strain regime but the overall agreement can be considered
to be satisfactory. The Yeoh model is again distinguished through an extreme S-shape. In this experiment it is



Fig. 30. Results of the biaxial tension simulations.
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clearly visible that the latter model becomes too stiff in the large stretch domain. At last, as in the previous
tests, the Ogden model reproduces the experimental data in an excellent manner.

In general it can be said that the AB model and the BR approach are able to reproduce the material re-
sponse of the experiments in all three deformation states very well. As expected more or less the same results
are obtained which is justified by the same micro mechanical approach. Both models are based on the Lange-
vin statistics with the difference that the BR model uses more terms in the Taylor expansion of the Langevin
function.

Only the Ogden model which, however, includes six material parameters is superior to the approaches AB
and BR. The material parameters are not micro mechanically motivated and therefore more difficult to deter-
mine than the values of n, N, # and u.

7. Conclusions and outlook

In the present contribution we have developed a micro mechanically based finite element approach to
model the finite deformation behaviour of rubber-like elastomers. The main advantage of the suggested pro-
cedure is that only physically based parameters are used. These are n (the number of chain segments), N (the
number of chains per reference volume) and the parameter c which depends on the valence and the rotation
angle of the chains. The only user-defined parameter is fchain, the ratio of the number of chains per reference
volume with respect to the number of truss element per reference volume.

The comparison with experimental results shows that the present approach serves to model the material
behaviour of rubber-like in different deformation states very well. We obtain results of the quality of the
Arruda–Boyce model which is easily explained by the fact that both concepts have the same micro mechanical
basis.

The proposed approach can be additionally used to simulate the deformation of networks with complex
shape and arbitrary chain configurations. It is further possible to study the interaction between the micro
and the macro mechanical behaviour in detail. In particular, we have investigated the influence of the chain
length on the macroscopic response as well as the effects of non-affine deformation and inhomogeneous chain
bundle arrangements.
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Concerning the practical use it is important to state that the numerical effort of the new concept is compa-
rable to the computational cost of conventional finite element simulations of rubber-like structures. This is
confirmed by means of several studies of convergence which show that convergence of the solution with re-
spect to the number of elements is achieved by means of rather coarse meshes.

Future work should be directed to simulate inelastic material behaviour, e.g. the Mullins� effect and visco-
elasticity. Inelasticity at the macro level can be explained at the micro level by the effects of chain breakage and
reconnection. The present model offers the possibility to replace the constant parameter fchain by a deforma-
tion-dependent function. In this way the variation of the number of chains in dependence of stress or defor-
mation can be modelled without noticeable additional effort. A further extension of the concept should
concern the modelling of filled polymers which are of major importance in industrial applications. One prom-
ising idea to include fillers into the polymer network model is to replace certain clusters of tetrahedrons as filler
particles.
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